Lysario – by Panagiotis Chatzichrisafis

"ούτω γάρ ειδέναι το σύνθετον υπολαμβάνομεν, όταν ειδώμεν εκ τίνων και πόσων εστίν …"

In exercise [1, p. 34 exercise 2.1] we are asked to prove that the inverse of a lower triangular matrix is also lower triangular by using relation [1, p. 23, (2.30)]. read the conclusion >
Oft ist es geschickt Code für einen eingebetteten Controller direkt mit seiner Hardwareumgebung zu simulieren. Ein hierfür frei erhältliches Tool, VMLAB (Visual Micro Lab) für die AVR Familie von ATMEL wird in dem beiliegenden Tutorial beschrieben.
  • 1 Comment
  • Filed under: German, Tutorials, VMLAB
  • In exercise [1, p. 34 exercise 2.5] we are asked to show that the matrix \mathbf{R}=\sigma^2
 \mathbf{I}+P_1\mathbf{e_1}\mathbf{e_1}^H+P_2\mathbf{e_2}\mathbf{e_2}^H is circulant when \mathbf{e_i}^H=\left[ {\begin{array}{*{20}c}
   1  &  {e^{-j2\pi f_i } } & {e^{-j2\pi (2f_i) } } & \cdots  &  {e^{-j2\pi (n - 1)f_i } }  
\end{array}} \right], i=1,2. read the conclusion >
    The exercise [1, p. 34 exercise 2.4] asks to show that if \mathbf{F} is a full rank m \times n matrix with  m > n, \mathbf{x} is a m \times 1 vector, and \mathbf{y} is an m \times 1 vector, that the effect of the linear transformation
    \mathbf{y}=\mathbf{F}\left(\mathbf{F}^H\mathbf{F}\right)^{-1}\mathbf{F}^H\mathbf{x} (1)

    is to project \mathbf{x} onto the subspace spanned by the columns of \mathbf{F}. Specifically, if \{\mathbf{f_1},\mathbf{f_2},...,\mathbf{f_n}\} are the columns of \mathbf{F}, the exercise [1, p. 34 exercise 2.4] asks to show that
    (\mathbf{x-y})^{H}\mathbf{f_i}=0, \textrm{  i=1,2,...,n.} (2)

    Furthermore it is asked why the transform \mathbf{F}\left(\mathbf{F}^H\mathbf{F}\right)^{-1}\mathbf{F}^H must be idempotent. read the conclusion >
    The exercise [1, p. 86 ex. 3.16] asks to prove that if the eigenfunctions and eigenvalues of an operator  \widehat{A} are \{\phi_{n}\} and \{a_{n}\}, respectively (\ensuremath{\widehat{A}}\phi_{n}=a_{n}\phi_{n}) then the eigenfunctions of a function f(x) having an expansion of the form:
    f(x)=\sum\limits^{\infty}_{l=0}b_{l}x^{l} (1)

    will also be \phi_n  with corresponding eigenvalues f(a_n) , n=0,1... . That is f(\widehat{A})\phi_n=f(a_n)\phi_n. read the conclusion >

    Recent Comments